
eTPUC
Code Development System

A2-490 Dutton Drive
Waterloo, Ontario, Canada

N2L 6H7 • www.bytecraft.com

Optimizing C Compiler and Development Tools
for the Freescale eTPU

Frequently
Asked

Questions



Legal Notices
Copyright © 2007 Byte Craft Limited. Licensed Material. All rights reserved.

The Byte Craft Limited Code Development System programs and manual are protected by 
copyrights. All rights reserved. No part of this publication may be reproduced, stored in a retrieval 
system, or transmitted in any form or by any means, electronic, mechanical, photocopying, 
recording, or otherwise without the prior written permission of Byte Craft Limited.

Trademarks: 
• PC-DOS and IBM are trademarks of International Business Machines Inc.
• Windows, Windows NT, and MS-DOS are registered trademarks or trademarks of 

Microsoft Corporation.
• Pentium is a trademark of Intel Corporation.
• Motorola is a registered trademark of Motorola Inc. In May 2004, Motorola SPS changed 

its name to Freescale Inc. Freescale is a registered trademark of Freescale Inc.
• PowerPC is a registered trademark of International Business Machines Inc.
• Other named and terms used herein are trademarks of their respective holders.

Disclaimer 

While every attempt is made to ensure the accuracy and completeness of the information in this 
document, some errors may exist. Byte Craft Limited cannot accept responsibility of any kind for 
a customer's losses due to their use of this document.

Byte Craft Limited reserves the right to make changes without notice in the products or software 
described or contained herein in order to improve design and/or performance.

Byte Craft Limited assumes no responsibility or liability for the use of any of these products, 
conveys no license or title under any patent, copyright or make work right to these products or 
processes, and makes no representation or warranty that these products are free from patent, 
copyright or make work right infringement, unless otherwise specified.

Applications that are described herein for any of these products are for illustrative purposes only. 
Byte Craft Limited makes no representation or warranty that such applications are suitable for the 
specified use without further testing or modification.

Warranty 

Byte Craft Limited warrants the physical storage medium and documentation to be free of defects 
in materials and workmanship for a period of thirty days from date of purchase. In the event of 
written notification within the warranty period of defects in material or workmanship, Byte Craft 
Limited will replace the storage medium or documentation. The remedy for breach of this 
warranty shall be limited to replacement and shall not encompass any other damages, including 
but not limited to loss of profit, special, incidental, consequential or other claims.

Byte Craft Limited specifically disclaims all other warranties, expressed or implied, including but 

ii 



not limited to implied warranties of merchantability and fitness for a particular purpose with 
respect to defects in the storage medium and documentation, and without limiting operation of the 
program license with respect to any particular application, use or purpose.

In no event shall Byte Craft Limited be liable for any loss of profit or any other commercial 
damage, including but not limited to special, incidental, consequential or other damages.

Use in Life Support must be expressly authorized 

Byte Craft Limited products are not for use as critical components in life support devices or 
systems without express written approval of an officer of Byte Craft Limited. As used herein:

• Life support devices or systems are devices or systems which support or sustain life and 
whose failure to perform, when properly used in accordance with instructions for use 
provided in the labeling, can be reasonably expected to result in a significant injury to the 
user.

• A critical component is any component of a life support device or system whose failure to 
perform can be reasonably expected to cause the failure of the life support device or 
system, or to affect its safety or effectiveness.

This warranty shall be governed by the laws of the Province of Ontario in Canada.

License Statement 

This software is protected by both Canadian copyright law and international treaty provisions. 
Therefore, you must treat this software as you would a book, with the following exception: Byte 
Craft Limited authorizes you to make archival copies of the software for the sole purpose of 
backing up our software to protect your investment from loss.

This software may be used by any number of people and may be freely moved from one computer 
location to another, so long as there is no possibility of it being used at one location while it is 
being used at another.

This software can not be used by two different people or on two different computers at the same 
time. 

Byte Craft Limited grants you, the licensed owner of a Byte Craft Limited Code Development 
System, the right to incorporate library routines into your programs. You may distribute your 
programs containing Code Development System library routines in executable form without 
restriction or fee, but you may not give away or sell any part of the Code Development System 
library source code.

Support 

We provide technical support to all registered Byte Craft Limited Customers.

All Byte Craft Limited products include free updates for one year after purchase, or until the next 
major release, whichever is longer. You are also entitled to a free upgrade to any major release 
within one year of the original purchase. After one year, upgrades are available to registered 
customers only, at a reduced price.

  iii 



You must register your Byte Craft Limited product, to receive technical support and information 
about any new versions of this software. To register, return the registration card to Byte Craft 
Limited or complete the form on our website at: http://www.bytecraft.com/regprod.html.

 

Revision History
0.5 July 2004 Initial Draft

0.6 September 2004 Additional content

0.7 October 2004 Additional content

0.8 January 2006 Additional content

0.9 July 2006 Additional content

1.0 June 2007 Corrections

1.0p July 2007 PDF; additions

iv 

Byte Craft Limited
Byte Craft Sdn Bhd in Malaysia is not associated with Byte Craft Limited in Canada. 
Byte Craft Sdn Bhd is a systems development and consultancy company in Kuala 
Lumpur serving South East Asia.

BCL Technologies is not associated with Byte Craft Limited in Canada. BCL 
Technologies sells document management and voice recognition software.

http://www.bytecraft.com/regprod.html
http://www.bcltechnologies.com/
http://www.bcltechnologies.com/
http://www.bcltechnologies.com/
http://www.bytecraft.com.my/
http://www.bytecraft.com.my/
http://www.bytecraft.com.my/
http://www.bytecraft.com/regprod.html
http://www.bytecraft.com/regprod.html


Table of Contents
1. The Product...................................................................................................................................................1
2. Programming Technique.............................................................................................................................. 5
3. Language.....................................................................................................................................................11
4. Implementation........................................................................................................................................... 17
5. Host Interfacing.......................................................................................................................................... 21
6. Moving from Assembly..............................................................................................................................23
7. Troubleshooting..........................................................................................................................................25
8. eTPU Host Interface Variables...................................................................................................................27

8.1. eTPU_C information..........................................................................................................................27
8.1.1. ::ETPUcode, ::ETPUcode32..................................................................................................... 28
8.1.2. ::ETPUcodeimagesize............................................................................................................... 29
8.1.3. ::ETPUentry...............................................................................................................................29
8.1.4. ::ETPUentrybase....................................................................................................................... 29
8.1.5. ::ETPUentrytables..................................................................................................................... 30
8.1.6. ::ETPUentrytype........................................................................................................................30
8.1.7. ::ETPUfilename.........................................................................................................................30
8.1.8. ::ETPUfunction......................................................................................................................... 31
8.1.9. ::ETPUfunctionframeram..........................................................................................................32
8.1.10. ::ETPUglobalimage, ::ETPUglobalimage32........................................................................... 32
8.1.11. ::ETPUglobalinit, ::ETPUglobalinit32....................................................................................33
8.1.12. ::ETPUglobals......................................................................................................................... 34
8.1.13. ::ETPUimagesize.....................................................................................................................35
8.1.14. ::ETPUliteral........................................................................................................................... 35
8.1.15. ::ETPUmaxrom....................................................................................................................... 36
8.1.16. ::ETPUmisc............................................................................................................................. 36
8.1.17. ::ETPUnames...........................................................................................................................37
8.1.18. ::ETPUparameterram...............................................................................................................37
8.1.19. ::ETPUparams......................................................................................................................... 38
8.1.20. ::ETPUstaticinit, ::ETPUstaticinit32....................................................................................... 39
8.1.21. ::ETPUsymboltable................................................................................................................. 40
8.1.22. ::ETPUlocation........................................................................................................................40
8.1.23. ::ETPUtype..............................................................................................................................41
8.1.24. ::ETPUsizeof........................................................................................................................... 42
8.1.25. ::ETPUfunctionname, ::ETPUfunctionnumber....................................................................... 42
8.1.26. ::ETPUengine.......................................................................................................................... 42

9. Useful #pragmas......................................................................................................................................... 43
9.1. #pragma write.................................................................................................................................... 43

10. Appendix...................................................................................................................................................45
10.1. Building Software............................................................................................................................ 45

11. eTPU_C Glossary..................................................................................................................................... 47

  v 



Examples
Example 1: engine.lib members....................................................................................................................... 2
Example 2: Recovering the Capture register values.........................................................................................7
Example 3: Semaphores................................................................................................................................... 9
Example 4: Enabling matches during a thread............................................................................................... 13
Example 5: Host Initialization........................................................................................................................ 14
Example 6: Byte-wide operations...................................................................................................................17
Example 7: Bit Fields..................................................................................................................................... 19
Example 8: ::ETPUfilename usage.................................................................................................................31

Tables
Table 1: Types and sizes.................................................................................................................................11
Table 2: Type keywords for Host Interface Macros.......................................................................................27

vi 



Welcome
Byte Craft Limited has always been committed to programmers working within the C language. 
We specialize in making C available for targets with limited resources or specialized architectures. 
We seek to comply with relevant C standards within the capabilities of the target part.

eTPU is a truly specialized architecture. To say desigining for eTPU was a challenge is an 
understatement. Programming eTPU in assembly falls under the "anything is possible" category. 
We've done it, and we've seen it done, but not often. To get code of any efficiency requires an 
assembler with capabilities near to those of a compiler.

Optimized hardware does add to the complexity of the eTPU. That's why Byte Craft Limited has 
been involved with the eTPU from the beginning, contributing machine-generated language 
expertise. No matter how intricate the eTPU might be, the engineers designing with it need to 
meet the same kind of deadlines.

In order to program a distinctly-different type of controller with C, we've specified some eTPU_C-
specific idioms for programmers to use.

This document collects techniques we've learned along the way.

 

  vii 

Presentation
Due to the presence of listing file examples, some pages may not be presented 
properly (lines may stretch off the edge of the page). Please accept our apologies.





1. The Product

Questions about eTPU_C features
1. Isn't hand-optimized code more efficient?

I've found an instance where optimization should have happened but didn't. Why is this so?

There is no technical reason why compiled code on the eTPU cannot be as tight as hand-
optimized code. The ISO C standard for embedded systems overcomes previous C 
language limitations related to embedded.

There are three things that the eTPU_C compiler can do very well that hand optimization 
finds difficult.
1. Computers are very good at accounting.
2. Programmers tricks, once added to the knowledge base in the eTPU_C compiler, 

remains available for everyone's applications forever. The compiler is capable of 
combining these tricks into combinations that we have not anticipated.

3. Most of the detail of the instruction set and eTPU architecture is embedded in the 
compiler. Application developers can rely on this and focus on application details.

In the eTPU_C compiler, we have placed in the code generator rules that allow for sub-
command re-ordering. What we found was there are only a few cases where this can 
happen without un-wanted side effects. We can implement complex rules only as we gather 
more experience identifying what should be allowed. The problem is the same as for hand 
coding, except we only need to get the details right once.

Optimizers have three parameters to work with: code size, ram requirements and execution 
cycles.

• Optimization occurs when one or more of the three is reduced but not at the expense of 
the remaining parameters.

• Compression occurs when there is an exchange between parameters where one or more 
are reduced at the expense of the remaining parameters.

Another way to look at this: optimizers will not make a bubble sort into a quick sort, but 
they will make the best bubble sort possible.

2. What should I know about linking?

Linking was most useful in the age of limited computing resources, on self-hosting 
systems. Since our customers are cross-developing, and compiling resources are effectively 
unlimited (given the typical sizes of the embedded executables they create), linking has 
declined in importance.

We advocate Absolute Code Mode, a single compile-and-link step. Absolute Code Mode 
simply compiles the main C module to an executable, as opposed to an object file.

  1 



Byte Craft Limited eTPU_C

In fact, choosing to use object files can raise some interesting consequences:

• Our compilers perform application-level optimization, to allow the compiler to pare the 
executable down as much as possible. This requires that #pragma directives from the 
device header file be present (or #included) in the linker command file, and that 
preprocessor directives can also appear there.

• When compiling to object, the compiler will raise an error when #included files are 
missing. It will do this even when the #include is discounted by preprocessor 
statements (conditional compilation).

3. What is Absolute Code Mode?

Absolute Code Mode in Byte Craft Limited compilers generates executable code from the 
compiler without a linking step. Absolute Code Mode still allows you to select object code 
from libraries and include it as part of an application.

The compiler will read in any functions that are referenced in the eTPU_C program and are 
available in a library file. Simply #include the library's header file at the top of a program 
module, or (if there is no header) #include the library itself at the end of the main 
program.

For example, consider a program that uses spark, fuel, cam, and crank ETPU_functions. 
These statements will select the referenced eTPU functions from engine.lib and assign 
them to individual eTPU function numbers.

Example 1: engine.lib members

#pragma ETPU_function spark @ 2;
#pragma ETPU_function fuel  @ 3;
#pragma ETPU_function cam   @ 4;
#pragma ETPU_function crank @ 5;

#include <engine.h>

When creating library files, enclose the code in #pragma library and #pragma 
endlibrary statements. These signal the compiler to read into the program only those 
functions that are referenced in the main program. Compile the library sources to an object 
file, and rename the object file with a .lib extension.

The significance of the .lib extension: .lib files are automatically included every time a 
.h file is #included in a source program. In all cases, library files should be renamed 
from .obj to .lib.

4. I need to combine one eTPU executable into another eTPU executable. How can I do this?

Use the BClink directive ETPUIMAGE. During this linking, the specified executable will be 

2 



  The Product 

linked in to the final executable. eTPU_C will perform checks to prevent conflicts between 
the two executables.

1. Export the first executable with the following eTPU_C host interface macro in the first 
linker command file.

#pragma write msc, ( ::ETPUcode );

2. Import the first executable during linking for the second executable, using the 
ETPUIMAGE directive instead of an OBJECT or LIBRARY directive.

Export a new executable and MISC value for the host compiler's use.

// Output a code image of both links
#pragma write q, (const u32 etpu_code[] = { ::ETPUcode32};);
// Create the combined MISC value
#pragma write q, ( #define MISC ::ETPUmisc );

// Read the code image of the first link and combine it with the second 
link
ETPUIMAGE= etpu_a_CPU.msc

5. How do I generate a S-record file of the executable?

To generate an S-record executable file, do the following:

1. Open your project in BCLIDE.

2. Choose Project|Properties, and click on the Compiler Properties tab.

3. In the Hex Dump File dropdown box, choose either "S1", "S2", or "S3" for the 
appropriate S-record output.

4. Ensure that the command line option +delf is not present in the Additional Options 
below.

5. Click OK, and compile your project as usual.

If you're not working within BCLIDE, add +dS1 or +dS2 or +dS3 to the compiler 
command line.

This will generate an S-record file for the entire executable.

The file will be zero-based and a complete executable, as it is generated from eTPU's point 
of view. To extract any pieces out of the file or alter it in other ways (such as changing the 
base address of the file), you'll need to use an external tool.

6. How do I interpret the reports the compiler generates?

  3 



Byte Craft Limited eTPU_C

eTPU_C generates some reports in the listing file that describe variables and 
ETPU_functions.

00F8 clocal                           signed int16        0200  0203

This type of report appears in the RAM usage map. It reports on the location that a variable 
occupies in RAM (some values also represent registers or parameter offsets) and its type.

It describes the range of instructions in the program for which this declaration is in scope 
and valid. Local variables allocated to the same locations are not overlapping so long as 
their scope ranges are different.

  0           one  0200  0210  (4 words)  SRAM =  0  Local RAM =  8

Each ETPU_function has an entry in the eTPU Function Summary. The function number 
at left describes its entries' position in the entry table. The record describes the function's 
lowest and highest ROM bytes and the number of 32-bit instruction words it uses.

Its parameter RAM and local RAM usage is also reported. Local RAM usage is for the 
entire function execution: memory allocated to local storage needs to equal the largest local 
RAM specification given here. The amount of parameter RAM needed can be used in host 
interface programs by expanding the host information macro 
::ETPUfunctionframeram(x), where x is either the function number or name given 
in these reports.

7. Is an eTPU_C available for Linux or Mac?

eTPU_C is a Windows executable. It should run under a Windows emulator or 
environment on Linux or Mac. However, we have little experience running it in these 
environments and cannot offer technical support for platform-specific issues. eTPU_C 
relies only on core functions in Windows that should be well supported.

Issues previously experienced include slow speed of execution, display and interactivity 
problems, and outright crashes.

4 



2. Programming Technique

Technique

Questions about programming technique with eTPU_C
8. How should I structure my code?

There are a few rules to follow:

• Functions that might not get linked in to the final executable should be put in libraries 
(modules with #pragma library and #pragma endlibrary directives at the 
beginning and end, respectively). This instructs the compiler to omit generating code 
for them if they're not invoked.
Order within the link is important too. Libraries containing any such functions must be 
linked in after the main program.

• Note that the above doesn't change the C requirement that functions be prototyped 
before they are invoked. Your library should have a standard header file with function 
prototypes.

• Both headers and program modules should have #ifdef/#define/#endif 
protection, to prevent compilation errors:

#ifndef __MODULE_C
#define __MODULE_C

/* ... */

#endif /* __MODULE_C */

If you've written single-file libraries without this protection, it might cause a problem 
when compiling using Absolute Code Mode.

9. What causes threads to start?

Threads are started by eTPU events (host/link service or match/capture events). Execution 
starts at the ETPU_function associated with a channel.

In eTPU_C, the if()..else if()..else structure "tests" the channel conditions, 
and causes the appropriate code to execute. The compiler translates the if() structure into 
the channel condition encoding, and uses that as position information for the thread entry 
point in that ETPU_function's portion of the entry table.

Though all the tests available to you in this context are valid (they aren't misleading), some 
of the tests check what caused the thread to start, and others check parametric information.

• Threads are actually invoked by Host Service Requests (hsr set to something other 

  5 



Byte Craft Limited eTPU_C

than 0), Link Service Requests from another thread, or Match or Transition events.
• Pin state and flag states (Flag0 and Flag1) are testable but are never directly 

responsible for a thread starting.
• There is always an implied test of hsr. A thread that doesn't explicitly test hsr will still 

only run when
hsr == 0

10. My threads aren't starting as expected. What's wrong?

Ensure that you give as much information to the compiler in the if()..else 
if()..else expressions as possible. Explicitly test lsr, m1/m2, pin, and 
flag0/flag1. Most importantly, add the hsr test explicitly, as the first term evaluated in 
an if() expression. Remember that hsr is always tested whether or not it's present in the 
thread expression. If it's not there, it is tested against a hsr value of 0.

Also note whether the #pragma ETPU_function directive specified the standard or 
alternate condition code encodings.

11. How do I access parameters coherently?

Add the following declarations to your program:

#define _coherentread(a_source,a_dest,b_source,b_dest) \
   {register_diob diob; register_p p; diob = a_source; \
    p = b_source;  b_dest = p; a_dest = diob;};

#define _coherentwrite(a_dest,a_source,b_dest,b_source)\
   {register_diob diob; register_p p; diob = a_source; \
    p = b_source; a_dest = diob; b_dest = p; };

register_diob diob;
register_p    p;

#define CoherentWrite(a,av,b,bv) diob = av; p = bv; NOP(); a = diob; b = p;

where a_dest and b_dest are the variables, and a_source and b_source are values to 
assign to a_dest and b_dest.

There are a few restrictions for using this macro:

• Only the b arguments can have 32 bit variables (because they use the p register) The a 
arguments in these macros must be 24 bits. The b arguments may be 24 or 32 bits.

• Expressions for b arguments cannot use anything that requires the diob register 
(arrays, pointers in general). There are no restrictions on the a expressions.

12. I need to place variables manually. How can I do this?

6 



  Programming Technique 

You can place variables in their declaration:

type identifier @ address;

Simply append an @ symbol and a valid address. Since eTPU_C can calculate constant 
expressions at compile time, you can use relative addresses:

void xyz (int32 a,b,c)
{
  int16 myarg1 @ &a;
  int16 myarg2 @ &a + 2;
  int8  myarg3 @ &b;
  int8  myarg4 @ &b + 1;

  /* ... */
}
    

 

Because eTPU is a multi-processor system (host and one or two engines), placing variables 
can avoid conflicts that semaphores or parameter coherency cannot resolve.

13. How can I recover the the contents of the Capture registers after ERT_A/B have been 
written over by programming a match?

Invoke:

chan = chan;

The compiler will not optimize this out, as there are side effects.

Example 2: Recovering the Capture register values
When a thread starts, ERT_A/B are loaded with the values of the Capture registers. This 
code reloads those values after using ERT_A/B for other purposes. 

                                          /* Thread starts, ERT_A/B = 
Capture */

                                          erta = 0x555;
0200 015F253D   alu erta = #0x0555.
0204                                      ertb = 0xAAA;

  7 

Important:
eTPU_C does not take such explicitly-placed variables into account when allocating 
memory for other variables. Check the listing file to ensure variables do not conflict.



Byte Craft Limited eTPU_C

0204 02AF36D9   alu ertb = #0x0AAA.
0208                                      channel.ERWA = 0b0;
                                          channel.ERWB = 0b0;

0208 7FF94F43   alu chan = chan ,ccs;     chan = chan;
                    chan write_erta,
                    write_ertb.

14. I'm having problems when the host and eTPU are using variables in the same PRAM word. 
Both are performing read-modify-write sequences on their own words, but the eTPU is 
overwriting the host's update. Is this a bug?

No, but it will require you to use semaphores to arbitrate access to the PRAM location.

15. I've performed an MDU division in my code. How can I access the remainder?

Access the MACH register directly:

Result = Value1 / Value2;  
Remainder = mach;

16. Does eTPU_C support signed divide?

No. Signed divide is not supported at this time.

17. How do I use eTPU semaphores?

The short answer: assign a number from 0 to 3 to channel.SMPR, and loop until 
channel.SMPR tests true. Perform the sensitive work to be protected by the semaphore, 
and assign -1 to channel.SMPR.

Alternatively, use these macros in eTPUC_common.h:

// Semaphore operations
#define IsSemaphoreLocked()   (channel.SMPR == 1)
#define LockSemaphore(num)    (channel.SMPR = num)
#define FreeSemaphore()       (channel.SMPR = -1)
    

Semaphores are intended for communication between eTPU engines, when two (or 
potentially more) of them appear in an eTPU subsystem. A channel can set a semaphore, 
(non-destructively) test whether the other engine set the same semaphore, and clear the 
semaphore it set.

8 



  Programming Technique 

Simply use the above statements in two ETPU_functions that differ in their channel 
assignment.

There's little reason to use them within one channel context: eTPU threads are run-to-
completion. The end of a thread clears the semaphore, but leaving it that long is not 
recommended as it could significantly delay the work of the other execution engine.

 

Example 3: Semaphores
This example demonstrates semaphore operations. The two functions below would be 
called by ETPU_functions running on different engines. Since they both use semaphore 2, 
the protected sections will not execute at the same time. 

                                        void one(void)
                                        {
                                          do
                                            {
                                              channel.SMPR = 2;
                                            }
0200 F7A0101F   if smlck==0 jump 0200,    while (channel.SMPR == 0);
                    noflush.
0204 FFFFF7DB   ram lock_g2.

                                          /* Do protected work */

                                          channel.SMPR = -1;

                                          /* Continue */
0208 FFFFCCF9   return,noflush.         }
020C FFEFF7FB   ram free_g.

                                        void theother(void)
                                        {
                                          do
                                            {
                                              channel.SMPR = 2;
                                            }
0210 F7A0109F   if smlck==0 jump 0210,    while (channel.SMPR == 0);
                    noflush.
0214 FFFFF7DB   ram lock_g2.

  9 

Important:
While you can set one of 4 different semaphore values, you don't need to test which 
number was set. Simply test channel.SMPR: if it's true, you've set the same 
semaphore as the other engine, and your work might interfere with its 
ETPU_function's work. Wait until channel.SMPR is clear before proceeding.



Byte Craft Limited eTPU_C

                                          /* Do protected work */

                                          channel.SMPR = -1;

                                          /* Continue */
0218 FFFFCCF9   return,noflush.         }
021C FFEFF7FB   ram free_g.

18. How do I access the angle clock?

The angle clock hardware allows microcode to watch the turning of a gear, and act at 
angles or rotations.

The TPR register, type register_tpr is specified as a structure:

struct tpr_struct {
  int TICKS   : 10;
  int TPR10   : 1;
  int HOLD    : 1;
  int IPH     : 1;
  int MISSCNT : 2;
  int LAST    : 1;
  } ;
 

Also, AddAngle() and SubAngle() macros (that perform modulo angle operations) 
are available in etpuc_util.h.

10 



3. Language
This section gives answers about the C language as implemented in eTPU_C.

Questions about eTPU_C Language
19.

Table 1: Types and sizes
20. I want to assign an ETPU_function to more than one channel. This function has static 

variables declared in it. Will all channels share this variable in common? If not, how will 
the function address them?

Each channel, when it runs a shared ETPU_function, can have its own function frame 
based at its own CPBA setting. This allocation contains parameters and local static 
variables.

21. How do I make better use of ETPU_function parameters from inside a subordinate C 
function?

ETPU_function parameters don't just pertain to the code in the ETPU_function body; 
they are relevant to everything that happens in the thread. It would be undesirable to pass 
these parameters around, and very difficult to get a globally-valid reference.

This item describes a way to use a matched set of ETPU_function parameters and a 
special global pointer to get access to the parameters in a C function.

Accessing C pointers
1. Declare a global structure of the eTPU function parameters, and declare the 

chan_base register as a pointer to the structure. The parameters of the current can then 
be referenced by name by the called function. This does not incur code or execution 
time overhead.

struct _xyz_arg {
  int chan_arg1,
      chan_arg2,
      chan_arg3;
} register_chan_base *pxyz_arg;

register_chan_base is the processor-specific type for the chan_base register; any 
declared variable of this type refers to chan_base.

2. Define an ETPU_function with struct _xyz_arg as the parameters. This is a slight 

  11 



Byte Craft Limited eTPU_C

inconvenience, but has the same effect as if the structure members were individual 
parameters.

int i;

#pragma ETPU_function xyz @ 3;

void xyz (struct _xyz_arg args)
{
  if (hsr == 3)
    { 
      i = args.chan_arg2;
    }  
}
  

Within the ETPU_function, code accesses the parameters indirectly:

 i = args.chan_arg2;

3. C functions access the ETPU_function prameters through the global chan_base 
pointer; it always points to the current ETPU_function parameter list.

void func ( void )
{
  int x;
  x = pxyz_arg -> chan_arg3;
}
  

Dereferencing this pointer by the "->" operator is the same as direct access to the eTPU 
function parameters, and doesn't require the address calculation at run-time in software. 
There is no code penalty to access parameters this way. The generated access code is 
identical to the parameter access in the eTPU function.

22. C includes a register data type. Does eTPU_C allow register allocations?

How do I access the P register from C?

eTPU_C does offer register-like types, with a few catches. You can use these types to 
access hardware registers directly, if necessary.

The traditional register alerts the compiler to allocate very fast storage (ie., a processor 
register) for a variable. It's a suggestion, and not mandatory. register might be useful on 
a system with lots of similar general-purpose registers. On eTPU, using register types is 
less of an advantage.

eTPU_C provides several specific register_xx types, one for each microcode-accessible 
register. Identifiers declared with them guarantee access to the named register.

12 



  Language 

Registers declared as global variables cannot be used to hold local variables or intermediate 
results.

register_xx variables actually point to a register, and therefore have no address value 
suitable for a pointer.

23. Can I use goto to jump between sections of the if()..else if()..else in an 
eTPU function?

In general, no. Remember that the bodies of this top-local-scope statement are individual 
eTPU threads. The compiler treats them as run-to-completion code, and may optimize them 
differently.

To share programming between more than one thread within an eTPU function, create a C 
function and call it from all relevant threads.

24. How do I enable or disable match events during a thread?

How do I set or clear the ME flag in the Entry Point?

How do I set the PP (parameter preload) flag in an Entry Point?

Use the intrinsic functions enable_match() and disable_match() to do this.

These functions generate no code. Look for the results in the listing file, in the entry point 
report following each part of the ETPU_function if()/else if()/else structure.

Example 4: Enabling matches during a thread
Note: some additional entry report lines deleted for space 

                                        void handler(void)
                                        {
                                          if(pin == 1)
                                            {
                                              enable_match();
0204 4FFFFFFF   nop.                          NOP();
0208 6FFFFFFF   end.                        }
0014 40 81        00 S0A P01 ME 0204  HSR 0     lsr 1  m1 1  m2 1  pin x 
flag1 x  flag0 0
 
0000             Thread Local RAM size
                                          else if(pin == 0)
                                            {
                                              disable_match();
020C 4FFFFFFF   nop.                          NOP();
0210 6FFFFFFF   end.                        }
0018 00 83        00 S0C P01 MD 020C  HSR 0     lsr 0  m1 0  m2 1  pin 0 
flag1 x  flag0 0
 
0000             Thread Local RAM size

  13 



Byte Craft Limited eTPU_C

                                          else
                                            {

By default, match events are enabled.

To set or clear the PP flag, use either of the preload_p01() or preload_p23() 
intrinsics.

25. How do I re-read the Capture registers into ERT1/2?

How do I read the Match registers into ERT1/2?

To refresh ERT1/2 with the value of the Capture registers, re-assign the chan register:

chan = chan;

To load ERT1/2 with the value of the Match registers, use the read_match() intrinsic.

read_match();

26. I declared a static local variable with the same name as a function parameter. The 
compiler didn't catch the problem. Is this a bug?

It's not a bug; it is a problem with the C language itself. The local shadows the parameter.

27. How should I initialize globals and static locals?

It's possible to use a Host Service Request to perform initialization, but we don't feel it's the 
best way.

We recommend using the host interface macros to create an initialization routine to run on 
the host.

Here is one way:

Example 5: Host Initialization
This example shows a basic initialization process. 

0200                                    #pragma write c, (

                                        int pram_location;
                                        int pram_top;
                                        #define init_pram(where, towhere) 
(pram_location = where, pram_top = towhere)
                                        #define alloc_pram(howmuch) 
(pram_location += howmuch)
                                        #define exceeds_pram(howmuch) 
((pram_location + howmuch ) > pram_top ? 1 : 0)

14 



  Language 

                                        /* ETPUglobalimage expansion omitted 
due to size: using
                                           const char etpu_image[]; */

                                        void initialize_eTPU(void)
                                        {
                                          /* initialize SCM */
                                          /* alternative, use 
ETPUcodeimagesize */
                                          for(int i; i < 4 ; i++)
                                            outb(ETPU_SCM_BASE+i, 
etpu_image[i]);

                                          /* initialize eTPU globals */
                                        #define __etpu_globals(offset, 
valtype, value) outb(ETPU_PRAM_BASE+offset, (valtype)value);

                                          ::ETPUglobals ;

                                          /* initialize channel 1 */
                                          /* ::ETPUfunctionnumber(handler) 
*/
                                          CxCFS(1, 1);

                                          init_pram();

                                          if(exceeds_pram(::ETPUfunctionfram
eram(handler))) error(OF_SOME_KIND);
                                          CxCBPA(1, 
alloc_pram(::ETPUfunctionframeram(handler)));

                                        #define __etpu_staticinit(offset, 
value) outb(CBPA_BASE(1)+offset, value);

                                          ::ETPUstaticinit(1);

                                        }
                                        );

The generated host interface file (here edited for length) looks like this: 

 int24 pram_location;
 int24 pram_top;
 #define init_pram(where, towhere) (pram_location = where, pram_top = 
towhere)
 #define alloc_pram(howmuch) (pram_location += howmuch)
 #define exceeds_pram(howmuch) ((pram_location + howmuch ) > pram_top ? 1 : 
0)
 const char etpu_image[] = { 0xC0,0x85,0xC0,0x85,0xC0,0x85,0xC0,0x85,

  15 



Byte Craft Limited eTPU_C

                             0xC0,0x85,0x40,0x81,0xC0,0x85,0xC0,0x85,
                             0xC0,0x85,0xC0,0x85,0xC0,0x85,0xC0,0x85,
                             0xC0,0x85,0xC0,0x85,0xC0,0x85,0xC0,0x85,
                             0xC0,0x85,0xC0,0x85,0xC0,0x85,0xC0,0x85,
                             0xC0,0x85,0xC0,0x85,0xC0,0x85,0xC0,0x85,
                             0xC0,0x85,0xC0,0x85,0xC0,0x85,0xC0,0x85,
                             0xC0,0x85,0xC0,0x85,0xC0,0x85,0xC0,0x85,
                             0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
                             0xFF,0xDF,0xCC,0xF9,0x1C,0xBF,0xAF,0xBE,
                             0xCF,0xFF,0xF1,0xFF,0xFF,0xC0,0x10,0x1F,
                             0x6F,0xFF,0xFF,0xFF,0x4F,0xFF,0xFF,0xFF,
                             0x6F,0xFF,0xFF,0xFF,0xFF,0xDF,0xCC,0xF9,
                             0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00
                              };
 void initialize_eTPU(void)
 {
   for(int24 i; i < 4 ; i++)
     outb(ETPU_SCM_BASE+i, etpu_image[i]);
 #define __etpu_globals(offset, valtype, value) outb(ETPU_PRAM_BASE+offset, 
(valtype)value);
   __etpu_globals(CC                               ,cc_reg    ,0x0000)
__etpu_globals(global1                          ,sint24    ,0x0001)
__etpu_globals(global2                          ,sint24    ,0x0005)
 ;
   CxCFS(1, 1);
   init_pram();
   if(exceeds_pram(0x0000 )) error(OF_SOME_KIND);
   CxCBPA(1, alloc_pram(0x0000 ));
 #define __etpu_staticinit(offset, value) outb(CBPA_BASE(1)+offset, value);
   ;
 }

28. The documentation talks about a device header file and #pragma memory declarations, 
but I don't see any file with such directives. Where are they?

The compiler has defaults (see section , ) that apply to most eTPU programs, so device 
header files aren't strictly necessary to compile eTPU programs.

In some situations, you might want to create a header file with configuration statements 
that alter the compiler's default settings for code memory and parameter RAM. This file is 
typically described as the "device header file". It must be available to the compiler and 
BClink (if used).

16 



4. Implementation

Implementation

Questions about eTPU_C program implementation
29. What defaults are built in to the compiler?

The default SCM space for generated code starts at 0x200. This allows etpu functions 0-7 
to be defined in the entry tables.

To allow more entries, this base rom space must be moved. This is done with

#pragma memory ROM [size] @ base_address;

For example:

#pragma memory ROM [0x8000-0x400] @ 0x400;

will allow for space for 16 entries in the eTPU function entry tables.

The default SPRAM space runs from 0x0000 to 0x0400. Allocations for global variables 
start at 0 and ascend. Locals and parameters not allocated from registers begin at the upper 
bound of SPRAM and descend.

You can change this setting with the #pragma memory RAM directive.

30. eTPU is word-oriented. How does this affect eTPU_C?

It doesn't. Internally, eTPU_C deals with bytes; this makes it easier for C programmers to 
work with eTPU_C. During code generation, eTPU_C makes a conversion to sub-word 
calculations, using different strategies to get at different bytes.

The only caveat you need to remember is this: code for operations on byte-sized values can 
be particularly expensive in terms of instructions. Whether it's warranted is a matter for the 
designer to decide.

Example 6: Byte-wide operations
This example demonstrates how eTPU_C handles byte-wide values. 

In this example, eTPU_C "parses" the target address, and uses the appropriate byte of P to 
host the assigned value. 

0000                                      int8 a;
0001                                      int8 * z;

                                          /* with pointers */
                                          z = &a;

  17 



Byte Craft Limited eTPU_C

0200 9FFF7B00   alu p = 0 ;
                    ram 0001 = p23_0.
0204 1C8F0FFE   alu a = #0x23.            *z = 0x23;
0208 9FEFFF00   ram diob = 0001.
020C FFEFF8D9   ram p31_0 = (diob).
0210 080BFBDA   alu nil = diob & 
                    #0x000002,ccs.
0214 F0E0119F   if z==0 jump 0230,
                    noflush.
0218 080BFBBA   alu nil = diob & 
                    #0x000001,ccs.
021C F0C0115F   if z==0 jump 0228,flush.
                    
0220 3FF9AFF4   alu p31_24 = a .
0224 F7C0121F   jump 0240,flush.
0228 3FF9BFF4   alu p23_16 = a .
022C F7C0121F   jump 0240,flush.
                    
0234 3FF9CFF4   alu p15_8 = a .
0238 F7C0121F   jump 0240,flush.
023C 3FF9DFF4   alu p7_0 = a .
0240 FFFFF8D9   ram (diob) = p31_0.

Thinking of SPRAM as a byte-oriented memory, eTPU is big-endian: the MSB will appear 
in the (effectively) lowest address space.

31. eTPU_C is allocating my variables all over the place. Some are allocated out of order! 
What's wrong?

The compiler has specific rules about allocating variables, temporary locations, and 
registers.

Globals are allocated in low memory locations (from 0x0000 up). Locals are allocated in 
high locations (from 0x0400 down). These locations are reported in the listing file, at the 
left-hand side of declarations.

If possible, the compiler will use a register instead of a memory location. Registers are 
assigned special pseudo-locations inside the compiler. In the listing file, the values 
appearing for declarations allocated from variables represent these internal pseudo-
locations, even if they appear out of order or overlap other variables.

32. I've declared an int8 as a global, and another int8 as a static local. They are both 
allocated at the same location. What's wrong?

Variable allocations are all over the place: some are out of order, and some are at 
impossible/unimplemented locations. What's wrong?

The listing file displays truncated memory allocation information obtained from the 
compiler's internal tables. Two addresses that appear exactly the same or from 

18 



  Implementation 

unimplemented locations represent virtual allocations made by the compiler, into registers 
or other address spaces used internally. The code will address the variables correctly.

33. An expression that uses division isn't working properly. What's wrong?

Due to implementation limitations, signed divides are not available.

34. The compiler has optimized a local variable into a register. I'd prefer it take a memory 
location. How can I change this?

The compiler has correctly optimized the variable into a register because it could do so. 
Declare the variable as a static variable, and eTPU_C will be forced to allocate a 
location.

35. eTPU_C is giving "RAM allocated out of default RAM space" warnings. What's wrong?

This warning can occur when #pragma memory RAM or #pragma memory LOCAL 
directives declare RAM that doesn't start on a 4-byte boundary. Variable declarations will 
try to allocate locations partly outside of declared RAM space

36. How are structure bit fields dealt with?

As efficiently as possible. Bit fields are packed within 32-bit boundaries. Packed bit fields 
can have a dramatic impact on the amount of code generated.

Example 7: Bit Fields
This example declares two structs, one with less than 32 bits of bit fields, and one with 
more. 

                                          struct {
0000 01 00                                  unsigned int shortElement : 1; 
/* 1 bit in size */
0000 11 01                                  unsigned int longestElement : 
17; /* 17 bits */
0002 06 02                                  unsigned int longElement : 6; 
/* 7 bits in size */
0000 0004                                 } myBitField;

                                          struct {
0000 0F 00                                  unsigned int fifteenbits : 15;
0001 04 07                                  int fourbits : 4;
0004 11 00                                  unsigned int seventeenbits: 17;
0004 0008                                 } myLongerBitField;

0200 9FEFFB00   ram p23_0 = 0001.         myBitField.shortElement = 1;
0204 0800DBA2   alu p7_0 = p7_0 | 
                    #0x000001,ccs.
0208 9FFFFB00   ram 0001 = p23_0.

  19 



Byte Craft Limited eTPU_C

020C CFEFF000   ram p31_0 = 0000.         myBitField.longElement = 0x55;
0210 1FF03FE4   alu p = #0x03FFFF.
0214 3B180FF2   alu a = p & p ,ccs.
0218 19597382   alu p = a | #0x540000,
                    ccs.
021C CFFFF000   ram 0000 = p31_0.

0220 9FEFFB01   ram p23_0 = 0005.         myLongerBitField.fourbits = -2;
0224 09F87FF2   alu p = p & #0xFF7FFF,
                    ccs.
0228 1BE87392   alu p = p & #0xF8FFFF,
                    ccs.
022C 000FF418   alu diob = #0xFF0000.
0230 3B787FF0   alu p = p | diob ,ccs.

37. The ASH WARE simulator has given a warning about an MDU subinstruction paired with a 
CCS subinstruction. It calls the subinstruction choice "puzzling". What's wrong?

This is effectively a "don't care" operation. The MDU flags are always preserved. The 
compiler uses CCS for all math operations, except where explicitly disabled by 
optimization.

See also section 2, Programming Technique.

20 



5. Host Interfacing

Questions about host interfacing
38. How do I cause a global exception?

The eTPU requires a value of 0x02 in the CIRC instruction field.

In C, CIRC is part of the channel structure:

channel.CIRC = 0x02

Alternatively, use a macro from eTPUC_common.h.

#define SetGlobalException()        (channel.CIRC = 2)
      

39. What other ways can I signal the host?

There are two other exception types: channel interrupts and data transfer interrupts. In 
those devices without DMA hardware, the two are indistinguishable. Assign values 0 or 1 
to channel.CIRC, or use these macros from eTPUC_common.h.

// Channel control macros
#define SetChannelInterrupt()       (channel.CIRC = 0)
#define SetDataTransferInterrupt()  (channel.CIRC = 1)
      

40. How should the host communicate with the eTPU?

There are a few ways:

• You can pass information through static locals. The host sets these itself, during 
initialization.
Use the ::ETPUlocation macro to identify the offset of the static in the function 
frame. Rather than assigning the value in ::ETPUstaticinit which comes from 
the eTPU_C program, simply set your own initial value.
For more information on host interface macros, see section 8, eTPU Host Interface
Variables.

41. What else do I need to know?

In order for the host to manage the eTPU_C program, it needs information gleaned from 
the eTPU_C program at compile time.

See section 8, eTPU Host Interface Variables for a way to extract information from the 
eTPU_C program at compile time and make it available to the host's program at compile 
time.

  21 





6. Moving from Assembly
If you've programmed eTPU in assembly, this section includes information on how the compiler 
exposes eTPU functionality through the C language.

Moving from Assembly
42. How do I perform a read_mer or read_mer12 operation?

Use the read_match() intrinsic function.

43. What registers are available for inline assembly?

The DIOB, A, P in all of its forms ( p31_0, p31_16, and so on) are all available for inline 
assembly essentially without any issues.

The B register is used as a temporary location in expression processing. It is usually freed 
by the end of a C statement, allowing inline assembly.

The MACH and MACL are sometimes used by the compiler in C functions that don't involve 
multiply and divide operations as storage for local variables. Register usage in inline 
assembly is NOT tracked by the compiler; diagnose any conflicts through the listing file.

The C, D and SR are used for local variables in ETPU_function threads. Any of these 
registers may be declared as global variables in an application; if so declared, the compiler 
will not use registers for local variables.

  23 





7. Troubleshooting
1. I'm getting the error

OVERWRITING PREVIOUS ADDRESS CONTENTS xxxx Conflict in location of entry 
table in ROM

What's wrong?

There are two main possibilities:

• An ETPU_function number is duplicated between two ETPU_functions. Check the 
#pragma ETPU_function declarations in your program.

• There are more than 8 ETPU_functions and the entry address table has not been moved. 
See the #pragma entryaddr directive.

  25 





8. eTPU Host Interface Variables

8.1. eTPU_C information

eTPU_C generates useful information intended for the CPU host. eTPU_C expands host interface 
macros within #pragma write commands to communicate this information to the host CPU 
compiler. The values of the macros are described below.

Many eTPU_C host interface macros expand to C macro calls themselves. The macros called are 
not defined by eTPU_C; this convention allows you to process information generated by eTPU_C 
with the host CPU compiler. In many cases, the macro calls generated will be sequential, suitable 
for use in a constant array. If you choose to create an array, the C macro you write can supply the 
comma separator. Remember that C arrays may have a trailing comma after the last constant 
value; you need no special handling of the last macro expansion.

Numerous host interface macros accept either an ETPU_function name or number 
interchangeably. If you specify a function name, number, or parameter name that is not valid, 
eTPU_C will write an error message to the host interface file but not stop compiling.

Some macros include type information. The typing information is expressed in a single keyword, 
as follows:

Table 2: Type keywords for Host Interface Macros
Type Description

uint8 Unsigned 8-bit integer.

uint16 Unsigned 16-bit integer.

uint24 Unsigned 24-bit integer.

uint32 Unsigned 32-bit integer.

sint8 Signed 8-bit integer.

sint16 Signed 16-bit integer.

sint24 Signed 24-bit integer.

sint32 Signed 32-bit integer.

ufract24 Unsigned 24-bit fixed-point value.

sfract24 Signed 24-bit fixed-point value.

eTPU_C expands the following macros within #pragma write text:

 

  27 



Byte Craft Limited eTPU_C

8.1.1. ::ETPUcode, ::ETPUcode32

::ETPUcode
::ETPUcode32

::ETPUcode(size)

::ETPUcode32(size)

A constant array image of the eTPU program binary code. ::ETPUcode represents the program in 
chars, while ::ETPUcode32 uses 32-bit unsignedints.

Given without an size, the macros expand to the entire program. Given with an size, eTPU_C 
will expand the program image from offset 0 to the size given. The size may be a host interface 
macro like ::ETPUmaxrom.

The following declaration will generate a constant array carrying the whole eTPU application for 
the host interface code.

#pragma write c,(const char etpu_program[] = { ::ETPUcode }; );

For a short eTPU program, the resulting ::ETPUcode array looks like this:

const char etpu_program[] = { 0x9F,0xEF,0xFB,0x00,0x9D,0xF8,0x7A,0x00,
                              0x9F,0xEF,0xFB,0x00,0x9E,0xF8,0x7A,0x00,
                              0xFF,0xDF,0xCC,0xF9,0xFF,0xC0,0x00,0x1F,
                              0x6F,0xFF,0xFF,0xFF,0xFF,0xDF,0xCC,0xF9,
                              0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,

and so on, continuing to the end of an array the size of SCM. The ::ETPUcode32 array looks like 
this:

const char etpu_program32[] = { 0x9FEFFB00,0x9DF87A00,0x9FEFFB00,0x9EF87A00,
                                0xFFDFCCF9,0xFFC0001F,0x6FFFFFFF,0xFFDFCCF9,
                                0x00000000,0x00000000,0x00000000,0x00000000,

and so on. To emit just the program image, use the following:

#pragma write c, (const char etpu_program[] = { ::ETPUcode(::ETPUmaxrom) }; );

28 

Note:
If macros accept parameters, no space between the macro identifier and the opening 
parenthesis is permitted.



  eTPU Host Interface Variables 

8.1.2. ::ETPUcodeimagesize

::ETPUcodeimagesize

An integer size in bytes of the eTPU code image. This image includes all program code as well as 
unused program locations. Contrast with ::ETPUmaxrom.

You can use this to determine the size of ::ETPUcode, and divide it by 4 to determine the size of 
::ETPUcode32.

8.1.3. ::ETPUentry

::ETPUentry(function number)

::ETPUentry(name)

A list of entry points implementing the eTPU function, expressed as offsets into SCM. Each 
element in the list is in turn a C macro in the form

__etpu_entry(entry_number, start_address)

entry_number is a number from 0 to 31. The addresses emitted by this macro are entry points to 
the instructions of the thread.

The following declaration will emit a table of the entry points for an eTPU function 
myfunction().

#pragma write c, ( 
#define __etpu_entry(entry, offset) offset,

const void * myfunction_bases[] = { ::ETPUentry(myfunction)  };
);

Note that an extra value need not be appended to the array to terminate the comma-separated list 
of values generated by the macros.

8.1.4. ::ETPUentrybase

::ETPUentrybase

The base address of the first active entry table.

  29 



Byte Craft Limited eTPU_C

8.1.5. ::ETPUentrytables

::ETPUentrytables

A comma-delimited list of all the entry table base addresses.

8.1.6. ::ETPUentrytype

::ETPUentrytype(function number)

::ETPUentrytype(name)

The channel condition encoding format, standard or alternate, of an eTPU function (by name or 
number). A 0 value indicates standard entry encoding, while a 1 indicates the alternate entry 
encoding.

The following declaration will test the encoding of myfunction():

#pragma write c, ( 
#if ::ETPUentrytype(myfunction) == 0
#warning myfunction() channel condition encoding is STANDARD
#else
#warning myfunction() channel condition encoding is ALTERNATE
#endif /* ::ETPUentrytype */
);

The output in basename_CPU.c appears as follows:

#if 0 == 0
#warning myfunction() channel condition encoding is STANDARD
#else
#warning myfunction() channel condition encoding is ALTERNATE
#endif /* ::ETPUentrytype */

8.1.7. ::ETPUfilename

::ETPUfilename(filename including path)

This macro does not expand directly to any value. When expanded, it causes a side effect for the 
host interface file it's being written to. The host interface file is created with the file name given as 
the macro argument.

By default, host interface files are emitted with filenames of name_CPU.letter, where letter 
is specified in the #pragma write statement that performs the write. ::ETPUfilename changes 
this name to a user-specified filename.

30 



  eTPU Host Interface Variables 

Example 8: ::ETPUfilename usage

#pragma write h, (/* Code for <name>_CPU.h */);

#pragma write h, (::ETPUfilename(first_header.h)); //write h messages to 
first_header.h
#pragma write h, (/* Code for first_header.h */);

#pragma write h, (::ETPUfilename(second_header.h)); //write h messages to 
second_header.h
#pragma write h, (/* Code for second_header.h */);

8.1.8. ::ETPUfunction

::ETPUfunction

A list of all the eTPU function names and numbers. Each element in the list is in turn a C macro in 
the form

__etpu_function(name, number, engine)

where name is the eTPU function name, number is the function's number, and engine a 1 or 2 
depending upon which engine will run the function. The following declaration will emit a report 
of the function list:

#pragma write c, (
#define __etpu_function(name, number, engine) name engine:number 

/* eTPU function list
::ETPUfunction
   end of list */
);

The output in basename_CPU.c appears as follows:

#define __etpu_function(name, number, engine) name engine:number 

/* eTPU function list
__etpu_function(myfunction, 1, 1)
   end of list */

Preprocessing the code will expand the function entries into records describing each function.

  31 



Byte Craft Limited eTPU_C

8.1.9. ::ETPUfunctionframeram

::ETPUfunctionframeram(function number)

::ETPUrunctionframeram(name)

Size of the PRAM required, in bytes, for the ETPU_function (or ETPU_function_group) name or 
function number. The value consists of the total PRAM requirements for the function 
parameters and the local static variables, the function frame. It is expressed as an integer 
constant.

Function frames must start on an 8-byte boundary. Therefore, this value will be rounded up to the 
nearest 8-byte multiple.

The following declaration will create a value for the amount of RAM needed by three functions.

#pragma write c, (#define REQUIRED_RAM ( ::ETPUfunctionframeram(1) \
                                 + ::ETPUfunctionframeram(2) \
                                         + ::ETPUfunctionframeram(3) ));

The output in basename_CPU.c appears as follows:

#define REQUIRED_RAM ( 8 \
                       + 16 \
                       + 64 )

8.1.10. ::ETPUglobalimage, ::ETPUglobalimage32

::ETPUglobalimage
::ETPUglobalimage32

An image of the global PRAM variable space with initial values, expressed in either byte or 32-bit 
hexadecimal values.

The following declaration will emit an image of global PRAM values.

#pragma write c, ( const int global_var_init[] = { ::ETPUglobalimage }; );

The output in basename_CPU.c appears as follows:

const int global_var_init[] = { 1, 2, 3, 4, 5, 6, 7, 8,
                                3, 5, 7, 9, 2, 4, 6, 8,

32 



  eTPU Host Interface Variables 

and so on. The same effect can be accomplished with 32-bit values:

#pragma write c, ( const int32 global_var_init[] = { ::ETPUglobalimage32 }; );

The output in basename_CPU.c appears as follows:

const int32 global_var_init[] = { 0x12345678, 0x90123456,
                                  0x78901234, 0x56789012,

and so on. Either of these arrays allow the CPU program to initialize global PRAM.

8.1.11. ::ETPUglobalinit, ::ETPUglobalinit32

::ETPUglobalinit
::ETPUglobalinit32

A list of all initialized global variables. This list has the same content as 
::ETPUglobalimage/::ETPUglobalimage32. Each element in the list is in turn a C macro in 
the form

__etpu_globalinit(location, value)

The following declaration will generate two arrays for globals initialization: one of locations, the 
other of values.

#pragma write c, (
#define __etpu_globalinit(location, value) location,

/* Initialize eTPU globals: locations */
const gl_init_locations[] = { ::ETPUglobalinit };
/* end global locations */

#define __etpu_globalinit(location, value) value,

/* Initialize eTPU globals: locations */
const gl_init_values[] = { ::ETPUglobalinit };
/* end global values */
);

The output in basename_CPU.c appears as follows:

#define __etpu_globalinit(location, value) location,

/* Initialize eTPU globals: locations */
const gl_init_locations[] = { __etpu_globalinit(0x0000, 0x01) };
/* end global locations */

  33 



Byte Craft Limited eTPU_C

#define __etpu_globalinit(location, value) value,

/* Initialize eTPU globals: locations */
const gl_init_values[] = { __etpu_globalinit(0x0000, 0x01) };
/* end global values */

Note that no extra value need be appended to each array to terminate the comma-separated list of 
values.

Alternatively, you can take a different approach (this example using ::ETPUglobalinit32 
instead):

#define __etpu_globalinit(location, value) *(sharedram + location) = value;

::ETPUglobalinit32

Compiling the code will expand the global variable initializations into a form suitable for eTPU 
initialization undertaken by the host:

#define __etpu_globalinit(location, value) *(sharedram + location) = value;

__etpu_globalinit32(0x0000, 0x01234567)

which will in turn preprocess to the code

#define __etpu_globalinit(location, value) *(sharedram + location) = value;

*(sharedram + 0x0000) = 0x01234567;

8.1.12. ::ETPUglobals

::ETPUglobals

A list of all global eTPU variables exposed to host CPU code. Each element in the list is in turn a 
C macro in the form

__etpu_globals(name, datatype, address)

The following declaration will generate the list of globals accessible to the host:

#pragma write c, (
#define __etpu_globals(name, datatype, address) \

34 



  eTPU Host Interface Variables 

void write_##name (datatype value) { memset(address, (datatype)value, 
sizeof(datatype)); } \
datatype read_##name (void) { return (datatype)memread(address, sizeof(datatype)); 
}

/* Initialize eTPU Globals */
::ETPUglobals
/* end globals */
);

The output in basename_CPU.c appears as follows:

#define __etpu_globals(name, datatype, address) \
void write_##name (datatype value) { memset(address, value, sizeof(datatype)); } \
datatype read_##name (void) { return (datatype)memread(address, sizeof(datatype)); 
}

/* Initialize eTPU Globals */
_etpu_globals(one, int32, 0x0000)
/* end globals */

Compiling the code will expand the global variable initializations into accessors and mutators 
suitable for use by the host program.

8.1.13. ::ETPUimagesize

::ETPUimagesize

A value representing the size of the declared eTPU SCM image (in bytes). This is useful in 
initially writing the executable image to SCM.

Compare with ::ETPUcodeimagesize, above.

8.1.14. ::ETPUliteral

::ETPUliteral

A literal value to pass to the host interface code unchanged.

::ETPUliteral start character content end character

where start character is one of (, [, {, or <, and end character is the corresponding ), ], 
}, or >. If you need to put one of these syntax elements, unmatched, within content, choose 
another to use as the start and end characters for ::ETPUliteral.

For instance:

  35 



Byte Craft Limited eTPU_C

#pragma write c, ( /* generated by ::ETPUliteral(::ETPUglobalimage) */ );
#pragma write c, ( const int global_var_init[] = { ::ETPUglobalimage }; );

will generate a host interface file containing:

/* generated by ::ETPUglobalimage */
const int global_var_init[] = { 1, 2, 3, 4, 5, 6, 7, 8,

and so on.

C comments within ::ETPUliteral will not be stripped out.

8.1.15. ::ETPUmaxrom

::ETPUmaxrom

The highest offset in SCM written by the compiler during code generation.

Offsets higher than this will be written with the value of the #pragma option fillrom 
statement, if any.

8.1.16. ::ETPUmisc

::ETPUmisc

::ETPUmisc(size)

The MISC checkword for the application, expressed as an integer constant.

If given no parameter or an empty parameter, ::ETPUmisc returns the MISC value for the entire 
SCM image. If given an size parameter, ::ETPUmisc expands to the MISC value for the program 
from offset 0 of the given size in bytes, rounded up to the 32-bit word. The size may be a host 
interface macro like ::ETPUmaxrom.

The following declaration provides for the loading of the MISC checkword into the appropriate 
eTPU register.

#pragma write c, ( output(ETPUMISCCMPR, ::ETPUmisc); );

The output in basename_CPU.c appears as follows:

output(ETPUMISCCMPR, 0x12345678);

36 



  eTPU Host Interface Variables 

Alternatively, you can use:

#pragma write c, ( output(ETPUMISCCMPR, ::ETPUmisc(::ETPUmaxrom));

This calculates the MISC value for the generated program image.

8.1.17. ::ETPUnames

::ETPUnames

A formatted list of names of all of the eTPU functions in numerical order. Missing function 
numbers are null strings.

The following declaration will generate a report of the eTPU functions in the program.

#pragma write c, (
/* eTPU functions: 
::ETPUnames
*/
);

The output in basename_CPU.c appears as follows:

/* eTPU functions:
"myfunction",
"",
"",
"",
...and so on
*/

8.1.18. ::ETPUparameterram

::ETPUparameterram

The range of parameter RAM, in bytes, available to the CPU program (available RAM, minus 
eTPU globals and locals). Expressed as a comma-separated range.

The following declaration will emit a routine to clear PRAM in the area used by the program.

#pragma write c, ( 
#define clear_program_PRAM( from, to ) for (int i = from; i <= to; i++) 
{ clear(i); }

clear_program_PRAM(::ETPUparammeterram);
);

  37 



Byte Craft Limited eTPU_C

The output in basename_CPU.c appears as follows:

#define clear_program_PRAM( from, to ) for (int i = from; i <= to; i++) 
{ clear(i); }

clear_program_PRAM(0x0100, 0x0200);

8.1.19. ::ETPUparams

::ETPUparams(function number)

::ETPUparams(function name)

A list of parameters of the ETPU_function (or ETPU_function_group) at function name or 
function number, giving their names, data types, and offsets. Each element in the list is in turn 
a C macro in the form

__etpu_param(name, datatype, offset)

The data types are expressed as standard size-specific types, described above. Your host C 
compiler should have support for these types.

The following declaration will write the list of parameters for an eTPU function to a host interface 
file:

#pragma write c, (
#define __etpu_param(name, datatype, offset) datatype name @ offset;

/* Parameters for myfunction() */
::ETPUparams(myfunction)
/* end myfunction() */
);

The output in basename_CPU.c appears as follows:

#define __etpu_param(name, datatype, offset) datatype name @ offset;

/* Parameters for myfunction() */
__etpu_param(one, int32, 0x0000)
__etpu_param(two, int24, 0x0004)
__etpu_param(three, int32, 0x0007)
/* end myfunction() */

Compiling the code will expand the parameter specifications into a form suitable for passing 
parameters to the eTPU function through host interface code.

38 



  eTPU Host Interface Variables 

8.1.20. ::ETPUstaticinit, ::ETPUstaticinit32

::ETPUstaticinit(function number)

::ETPUstaticinit(name)

::ETPUstaticinit32(function number)

::ETPUstaticinit32(name)

A list of static initialization information for an ETPU_function or ETPU_function_group, 
specified by name or function number, and generated as 8-bit or 32-bit values. Each element in the 
list is in turn a C macro in the form

__etpu_staticinit(offset, value)

or, for 32-bit values,

__etpu_staticinit32(offset, value)

The following code will emit the static initialization information for myfunction().

#pragma write c, (
#define __etpu_staticinit(offset, value) output(offset, value);

/* static initialization for myfunction */
::ETPUstaticinit(myfunction)
/* end of myfunction */
);

The output in basename_CPU.c appears as follows:

#define __etpu_staticinit(offset, value) output(offset, value);

/* static initialization for myfunction */
__etpu_staticinit(0x0000,0x01)
__etpu_staticinit(0x0001,0x02)
__etpu_staticinit(0x0002,0x04)
/* end of myfunction */

For code that uses ::ETPUstaticinit32 instead, the macro calls will have 32-bit values:

#define __etpu_staticinit(offset, value) output(offset, value);

/* static initialization for myfunction */
__etpu_staticinit32(0x0000,0x01020304)
__etpu_staticinit32(0x0004,0x05060708)
__etpu_staticinit32(0x0008,0x09101112)
/* end of myfunction */

  39 



Byte Craft Limited eTPU_C

Compiling the code will expand the static initialization specifications into a form suitable for 
initializing the eTPU function through host interface code.

8.1.21. ::ETPUsymboltable

::ETPUsymboltable

The entire symbol table of the eTPU program. Each element in the list is a C macro in the form

__etpu_symbol(name, datatype, offset/location, PCrangeLow, PCrangeHi)

The following declaration will emit the symbol table for the eTPU program that is being compiled.

#pragma write c, (
#define __etpu_symbol(name, datatype, offset_location, PCrangeLow, PCrangeHi) 

/* Symbol Table 
::ETPUsymboltable
*/
);

The output in basename_CPU.c appears as follows:

#define __etpu_symbol(name, datatype, offset_location, PCrangeLow, PCrangeHi) 

/* Symbol Table 
__etpu_symbol(i                               ,sint24        , 0x0001 , 0x0224 , 
0x022B )
__etpu_symbol(j                               ,sint24        , 0x0005 , 0x0224 , 
0x022B )
__etpu_symbol(k                               ,sint32        , 0x0009 , 0x0224 , 
0x022B )
__etpu_symbol(func                            ,**            , 0x0004 , 0x022C , 
0x022F )
*/

In this example, the double asterisk type noted for func() is a special notation for functions.

Preprocessing the code will expand the symbols into a form suitable for use in documentation or 
in debugging applications.

8.1.22. ::ETPUlocation

::ETPUlocation(name)

::ETPUlocation(function name, name)

40 



  eTPU Host Interface Variables 

::ETPUlocation(function number, name)

The location in PRAM, as an offset, of the variable name. The macro has two forms, one for 
global variables, and one for ETPU_function parameters, and ETPU_function_group group-
globals. The offset is based on the channel parameter base set by the host CPU program (in the 
case of function parameters) or of the PRAM itself (in the case of globals).

If you specify an ETPU_function name or number, name must be a parameter within the eTPU 
function. Access to static local variables is not permitted.

eTPU_C generates locations for structure members, including packed integers. Use ::ETPUtype 
to learn more about the structure members and packed integers reported by ::ETPUlocation.

8.1.23. ::ETPUtype

::ETPUtype(name)

::ETPUtype(function name, name)

::ETPUtype(function number, name)

The data type of the variable name. name may be a simple variable, a structure, array or union, or 
a structure or union member.

The macro has two forms: one for global variables, and one for ETPU_function parameters and 
ETPU_function_group group-globals. If you specify an ETPU_function name or number, 
name must be a parameter or local variable within the eTPU function (or group).

If name is a structure or union, eTPU_C will generate a series of macro calls with parameter 
information describing the variable. Define macros in the host interface information to expand 
these macro calls.

• __etpu_struct_data(data_type)
This macro call is used to report structure entries of one of the eTPU_C simple types. 
data_type may be one of uint8/16/24/32, sint8/16/24/32, struct or 
struct_array.
The structure may be walked by the macro calls so that only the leaf types are examined. 
structs and unions that are part of the structure are identified as a struct; this implies that 
the member has members itself.
• __etpu_struct_array(array_type)

Arrays in a structure display this macro call, where array_type is one of 
uint8/16/24/32, sint8/16/24/32, struct or struct_array.
Array sizing information needs to be brought out as a constant elsewhere, using 
::ETPUsizeof.

  41 



Byte Craft Limited eTPU_C

• __etpu_struct_packed_int(sign, field_size_bits, field_offset_bits)
This macro call represents packed data types that are stored in structure fields. In eTPU_C, 
packed data types are always allocated so that no field may cross a 32 bit boundary.
A packed integer will be indicated as signed or unsigned. The macro call includes the 
size in bits of the packed integer member, and the offset within the 32-bit word. The least-
significant bit number is 0.

The data types are expressed as ISO standard size-specific types. Your host C compiler should 
have support for these types.

8.1.24. ::ETPUsizeof

::ETPUsizeof(name)

::ETPUsizeof(function name, name)

::ETPUsizeof(function number, name)

The size in bytes of the variable name.

The macro has two forms: one for global variables, and one for ETPU_function parameters and 
ETPU_function_group group-globals. If you specify an ETPU_function name or number, 
name must be a parameter or local variable within the eTPU function.

8.1.25. ::ETPUfunctionname, ::ETPUfunctionnumber

::ETPUfunctionname(function number)

::ETPUfunctionnumber(name)

The name or function number of an eTPU function, given the opposite data.

This function also returns the appropriate data for ETPU_function_groups.

8.1.26. ::ETPUengine

::ETPUengine(function number)

::ETPUengine(name)

The engine upon which the eTPU function will run. Expands to 1 or 2.

42 



9. Useful #pragmas

9.1. #pragma write
#pragma write char, (text);

#pragma write outputs macro-expanded text to a host interface file. char is an alphabetic 
character from a to z. The char is case-insensitive.

The output file name is the base name of the eTPU_C application with _CPU appended, and with 
char as an extension. There is no need to explicitly open or close any file: the compiler creates a 
host interface file at the first write directive.

For example, to write to a C source module, invoke:

#pragma write c, (// this comment appears in the host interface C file);

and to write to a C header file,

#pragma write h, (// this comment appears in the host interface header file);

Compiling C source modules into object files will not create host interface files. eTPU_C 
generates host interface files when creating the final executable at link time. The write directives 
and messages are also stored in the .COD file.

#pragma write directives write the value within parentheses with all macros expanded: other 
elements, including C comments, are emitted verbatim.

  43 





10. Appendix
This section includes other useful information extracted from eTPU_C documentation.

10.1. Building Software

Building Software
There are three ways to use eTPU_C to build eTPU executables. The command line method is 
useful when working with your preferred IDE.

1. Create a new project within BCLIDE. When you start eTPU_C, BCLIDE opens.
1. Choose Project|New Project

2. Fill in the Project Properties. For more information, see BCLIDE online help.

Note that ELF does not appear as a Hex Dump File option. Choose the Compiler tab, 
and add +delf to the Additional Options entry to cause the compiler to emit an ELF 
executable.

Click OK and then choose Save Project.

3. Choose File|New to create C modules as usual.

Compose your eTPU program.

4. To compile, press F9 or choose Compile|Compile.
2. Start the etpu_c.exe executable. A console opens, showing important controls for 

eTPU_C. You can use this console to compile your main C module. Note that ELF is a Hex 
Dump File option in the eTPU_C console.

3. Invoke the eTPU_C compiler from the Windows command line. eTPU_C is a Windows 
executable, but it returns a valid exit status suitable for use in scripts and Makefiles.
The command line is:

etpu_c.exe options sourcefile.c
The command line parameters are: 

 

  45 

Important:
Paths with spaces (for example "\My Documents") need to be quoted at the 
command prompt. This is a requirement of your command processor or shell; see 
your operating system documentation for more information.



Byte Craft Limited eTPU_C

 

46 

Note:
When invoking eTPU_C from a DOS-based IDE, consider using the start.exe 
command supplied with Windows. Use 

start /w eTPU_C.exe

to invoke the compiler, wait until it completes, and return the return status of the 
program. The compiler returns 0 for success, 1 for failure with errors.



11. eTPU_C Glossary
The eTPU has an architecutre all its own, so it brings a lot of terminology with it.

These are some common eTPU_C terms.

alternate

A keyword used in #pragma ETPU_function statements to indicate Alternate Channel 
Encoding.

channel

The eTPU hardware attached to each pair of input and output pins. During ETPU_function 
execution, access to the channel hardware takes place through the channel structure.

channel conditions

The collection of channel states that invoke an eTPU function. They include timebase matches or 
pin transitions, flag states, and host service requests. They are specified by logical operations in 
the top-level if()/else if()/else structure of an ETPU_function.

channel structure

A C structure specially interpreted by the compiler. Using the channel structure generates eTPU 
subinstructions. The associated chan type is declared in etpuc.h.

common function frame

A function frame shared by all channels configured for ETPU_functions in the group.

DIOB

Data Input Output Buffer. A register used for indirect operations on PRAM. eTPU_C makes 
heavy use of it in generated code. You can access it directly with variables of type 
register_diob.

engine

One of two eTPU execution engines in a typical eTPU implementation. Each engine has its own 

  47 



Byte Craft Limited eTPU_C

ALU, registers, and channel hardware. Two engines share code memory, parameter ram, and the 
interface to the host.

entry table

A table that holds entry points for all threads of all ETPU_functions. eTPU_C generates this 
structure automatically.

It can be relocated using the #pragma entryaddr directive.

eTPU_function

A C function specially declared as an entry point for eTPU programs.

Fractional Math

Math operations on values between 0 and 1, or -1 and 1.

On eTPU_C, fract24 variables hold 24-bit values. Though eTPU_C does have specific 
fractional math capability, fractional operations may also be accomplished by regular math 
operations.

Function Frame

The logical allocation of PRAM for ETPU_function parameters and static variables.

Each assignment of an EPTU_function to a channel has a separate function frame.

Group

One or more global variable, C function, or ETPU_function declarations, logically related and 
declared to be a logical unit with a name. May be safely re-used on multiple sets of channels.

Group-global

A variable that exists outside function scope, but within the scope of a Group. Not accessible to 
functions outside the Group.

Host

The processor that has one or more eTPUs as peripherals.

48 



  eTPU_C Glossary 

The processor is responsible for programming the eTPU, setting up eTPU function parameters, 
and starting it.

Host Interface Files

Files generated by eTPU_C for the use of the compiler creating the host program. eTPU_C can 
generate useful information with Host Interface Macros.

Host Interface Macros

Built-in macros expanded into information about the program by eTPU_C. eTPU_C can generate 
Host Interface Files to communicate this information to the host.

Host Service Request

An interrupt issued by the host processor.

To respond to a host service request, the ETPU_function must test the hsr variable in the 
uppermost if()/else if()/else structure. Omitting the test is equivalent to testing against 0, 
the do-nothing setting for the host-side request register.

if()/else if()/else structure

Specially-optimized code in an ETPU_function.

This uppermost code in an ETPU_function is a series of tests of the condition codes. This code 
never results in generated instructions: the compiler populates the entry table based on the tests.

MISC

The Multiple Input Signature Calculator.

eTPU_C calculates the appropriate signature value and makes it available to host interface files 
with the ::ETPUmisc host interface macro.

Parameters

Parameters are variables holding information passed from host to eTPU functions, or function to 
subordinate function.

ETPU_function parameters are declared exactly as other C function parameters. ETPU_function 
parameters are configured by the host processor during initialization, and remain in force until the 

  49 



Byte Craft Limited eTPU_C

host changes the channel's configuration.

PRAM

Parameter RAM. The RAM shared by one or more eTPU engines and the host. eTPU_C generates 
host interface information for this RAM. The host program allocates RAM space for the 
ETPU_function parameters and statics during ETPU_function and channel initialization.

Previously described as SPRAM (Shared Parameter RAM).

preloaded parameters

Parameters that are loaded into the P and DIOB registers at the beginning of thread execution. 
eTPU will preload either parameters 0 and 1, or 2 and 3, depending upon the setting in the entry 
table.

The compiler selects which parameters to preload, based on generated code. The setting appears in 
the listing file, in the entry:

00C4 40 80        03 S02 P01 ME 0200  HSR 1     lsr x ...

The setting appears in the sixth field: P01 for preload 0 and 1, P23 for preload 2 and 3.

post processing macros

An alternative name for host interface macros.

standard

A keyword used in #pragma ETPU_function statements to indicate Standard Channel 
Encoding.

standard header files

The files commonly #included into eTPU_C program modules.

• etpuc.h defines channel structure, registers and processors specific constants.
• etpuc_common.h assigns common names and operation definitions using the eTPU 

channel instructions.
• etpuc_util.h eTPU application utilities including angle math.

50 



  eTPU_C Glossary 

thread

An entry point and code run in response to certain channel conditions. Effectively, the body of one 
branch of the top-level if()/else if()/else structure of an ETPU_function.

  51 





Index
Absolute Code Mode.......................................... 2
angle clock........................................................ 10
arrays.................................................................41
Capture registers............................................... 14
chan_base.......................................................... 11
channel condition encoding.............................. 30
channel structure...................................................

SMPR...........................................................8
code image..................................................... 27p.
code image size................................................. 29
disable_match().................................................13
division..........................................................8, 19
enable_match()..................................................13
engine................................................................ 42
entry points............................................13, 27, 29
entry table base..................................................29
entry tables........................................................ 30
ERT registers...............................................14, 23
eTPU functions..................................... 27, 31, 37
ETPU_function................................................. 25
ETPUIMAGE......................................................2
file name............................................................30
flag state.............................................................. 5
function frame....................................... 11, 27, 32
function names............................................ 27, 37
global variables........................................... 32, 34
host interface files............................................. 43
host interface files.................................................

names......................................................... 30
host interface variables......................................27
host service request............................................. 5
image size..........................................................35
initial values...................................................... 27
initialized variables........................................... 33
instruction reordering..........................................1
legal notice.......................................................... 2
libraries.............................................................1p.
link service request..............................................5
linking................................................................. 1
literal data....................................................27, 35
macros............................................................... 43
match event................................................... 5, 13
Match registers............................................14, 23

ME flag............................................................. 13
MISC.................................................................36
MISC checksum................................................27
optimization........................................................ 1
P register........................................................... 12
parameter preload..............................................13
parameters.................................... 11, 14, 27, 37p.
pin state............................................................... 5
pointers..............................................................11
preload_p01().................................................... 13
preload_p23().................................................... 13
read_mer............................................................23
register types..................................................... 12
register_chan_base............................................ 11
semaphores..........................................................8
shared code memory......................................... 36
shared parameter ram............................... 37p., 41
sizeof........................................................... 27, 42
static.................................................................. 27
static local variables.................................... 14, 39
structures........................................................... 41
symbol table................................................ 27, 40
threads................................................................. 5
transition event....................................................5
types............................................................ 27, 41
variable types.................................................... 27
write directive................................................... 43
::ETPU variables............................................... 27
::ETPUcode, ::ETPUcode32............................. 28
::ETPUcodeimagesize....................................... 29
::ETPUengine....................................................42
::ETPUentry...................................................... 29
::ETPUentrybase............................................... 29
::ETPUentrytables.............................................30
::ETPUentrytype............................................... 30
::ETPUfilename................................................ 30
::ETPUfunction................................................. 31
::ETPUfunctionframeram..................................32
::ETPUfunctionname, ::ETPUfunctionnumber.42
::ETPUglobalimage, ::ETPUglobalimage32.....32
::ETPUglobalinit, ::ETPUglobalinit32..............33
::ETPUglobals...................................................34
::ETPUimagesize.............................................. 35

  53 



::ETPUliteral..................................................... 35
::ETPUlocation..................................................41
::ETPUmaxrom................................................. 36
::ETPUmisc.......................................................36
::ETPUnames.................................................... 37
::ETPUparameterram........................................ 37
::ETPUparams...................................................38
::ETPUsizeof.....................................................42

::ETPUstaticinit.................................................39
::ETPUsymboltable...........................................40
::ETPUtype........................................................41
#pragma.................................................................

write........................................................... 43
#pragma directives.............................................. 1
#pragma entryaddr............................................ 25

54 


	1. The Product
	2. Programming Technique
	3. Language
	4. Implementation
	5. Host Interfacing
	6. Moving from Assembly
	7. Troubleshooting
	8. eTPU Host Interface Variables
	8.1. eTPU_C information
	8.1.1. ::ETPUcode, ::ETPUcode32
	8.1.2. ::ETPUcodeimagesize
	8.1.3. ::ETPUentry
	8.1.4. ::ETPUentrybase
	8.1.5. ::ETPUentrytables
	8.1.6. ::ETPUentrytype
	8.1.7. ::ETPUfilename
	8.1.8. ::ETPUfunction
	8.1.9. ::ETPUfunctionframeram
	8.1.10. ::ETPUglobalimage, ::ETPUglobalimage32
	8.1.11. ::ETPUglobalinit, ::ETPUglobalinit32
	8.1.12. ::ETPUglobals
	8.1.13. ::ETPUimagesize
	8.1.14. ::ETPUliteral
	8.1.15. ::ETPUmaxrom
	8.1.16. ::ETPUmisc
	8.1.17. ::ETPUnames
	8.1.18. ::ETPUparameterram
	8.1.19. ::ETPUparams
	8.1.20. ::ETPUstaticinit, ::ETPUstaticinit32
	8.1.21. ::ETPUsymboltable
	8.1.22. ::ETPUlocation
	8.1.23. ::ETPUtype
	8.1.24. ::ETPUsizeof
	8.1.25. ::ETPUfunctionname, ::ETPUfunctionnumber
	8.1.26. ::ETPUengine


	9. Useful #pragmas
	9.1. #pragma write

	10. Appendix
	10.1. Building Software

	11. eTPU_C Glossary



